Center Manifolds for Delay Equations
نویسندگان
چکیده
منابع مشابه
Inertial and slow manifolds for delay equations with small delays
Yu. A. Ryabov and R. D. Driver proved that delay equations with small delays have Lipschitz inertial manifolds. We prove that these manifolds are smooth. In addition, we show that expansion in the small delay can be used to obtain the dynamical system on the inertial manifold. This justifies “post-Newtonian” approximation for delay equations.
متن کاملPeriodic perturbations with delay of autonomous differential equations on manifolds
We apply topological methods to the study of the set of harmonic solutions of periodically perturbed autonomous ordinary differential equations on differentiable manifolds, allowing the perturbing term to contain a fixed delay. In the crucial step, in order to cope with the delay, we define a suitable (infinite dimensional) notion of Poincaré T -translation operator and prove a formula that, in...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملMultistep collocation method for nonlinear delay integral equations
The main purpose of this paper is to study the numerical solution of nonlinear Volterra integral equations with constant delays, based on the multistep collocation method. These methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. Also, we analyze the convergence of the...
متن کاملUlam stabilities for nonlinear Volterra-Fredholm delay integrodifferential equations
In the present research paper we derive results about existence and uniqueness of solutions and Ulam--Hyers and Rassias stabilities of nonlinear Volterra--Fredholm delay integrodifferential equations. Pachpatte's inequality and Picard operator theory are the main tools that are used to obtain our main results. We concluded this work with applications of ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Funkcialaj Ekvacioj
سال: 2020
ISSN: 0532-8721
DOI: 10.1619/fesi.63.39