Center Manifolds for Delay Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertial and slow manifolds for delay equations with small delays

Yu. A. Ryabov and R. D. Driver proved that delay equations with small delays have Lipschitz inertial manifolds. We prove that these manifolds are smooth. In addition, we show that expansion in the small delay can be used to obtain the dynamical system on the inertial manifold. This justifies “post-Newtonian” approximation for delay equations.

متن کامل

Periodic perturbations with delay of autonomous differential equations on manifolds

We apply topological methods to the study of the set of harmonic solutions of periodically perturbed autonomous ordinary differential equations on differentiable manifolds, allowing the perturbing term to contain a fixed delay. In the crucial step, in order to cope with the delay, we define a suitable (infinite dimensional) notion of Poincaré T -translation operator and prove a formula that, in...

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

‎Multistep collocation method for nonlinear delay integral equations

‎The main purpose of this paper is to study the numerical solution of nonlinear Volterra integral equations with constant delays, based on the multistep collocation method. These methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. Also, we analyze the convergence of the...

متن کامل

Ulam stabilities for nonlinear Volterra-Fredholm delay integrodifferential equations

In the present research paper we derive results about existence and uniqueness of solutions and Ulam--Hyers and Rassias stabilities of nonlinear Volterra--Fredholm delay integrodifferential equations. Pachpatte's inequality and Picard operator theory are the main tools that are used to obtain our main results. We concluded this work with applications of ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Funkcialaj Ekvacioj

سال: 2020

ISSN: 0532-8721

DOI: 10.1619/fesi.63.39